Pathophysiology
In the usual setting, blood from the placenta enters the fetal circulation through the umbilical veins and exitsvia the umbilical artery. Very rarely (1% of MC twins or 1:35,000 births), retrograde or reversed arterial perfusion takes place, from the placenta through the umbilical artery of one of the twins, and the twin with thereversed flow receives all of its blood supply from a normal co-twin who gains circulatory predominance-theso-called "pump" twin. This vascular abnormality is termed the twin reversed arterial perfusion (TRAP)sequence. Whereas the "pump" twin is usually anatomically normal, the heart of the recipient twin is unable to supportperfusion of the upper body. Severe reduction anomalies of the upper part of the fetal body are the usual result.Often, these twins lack a heart (acardiac) and head (acepahalic), except for a few cases with a rudimental heart("hemicardiac"). This is why the TRAP sequence is also called chorioangiopagus parasiticus, and as acardiactwinning.
The TRAP sequence and the twin-twin transfusion syndrome (TTTS) differ in several important aspects. First,in TTTS the shunt is via an arterio-venous anasthomosis whereas in TRAP the shunt is via an arterio-arterialconnection. Second, the twins in TTTS are usually anatomically normal, whereas in TRAP, the recipient twinis grossly malformed. Finally, the recipient in TTTS suffers from cardiac overload whereas the heart problemin TRAP is present in the donor, who provides for both twins. Opinions differ whether the underlying pathology is primary cardiac agenesis or cardiac dysmorphogenesis secondary to the reversed flow(1).Some authors maintain that a lethal heart malformation in early organogenesis– the so-called "cardiac regression sequence" – seems a likely underlying pathology(2).An alternative view holdsthat inadequate perfusion of the recipient twin is responsible for the development of the characteristic anomalies. Given the availability of first trimester sonography, the last word has not been said regarding thepathogenesis of TRAP(3).
In 1981, Bieber and co-workers (4) identified two maternally derived chromosome sets and both maternal histocompatibility antigen haplotypes in the tissues of an acardiac twin. These findings were explained by proposing independent fertilizations, by two different spermatozoa, of a normal haploid ovum and its diploidfirst-meiotic-division polar body. More recently, however, Fisk et al performed PCR on DNA extraction from 9 sets with the TRAP sequence and calculated that the chance that all acardiac twins resulted from polar bodyfertilization is <1:100,000(5).
Despite being anatomically normal, the imposed cardiac overload is a serious threat to the "pump" twin and, ifleft untreated, it may die in as many as 50 - 75% of cases(1).
Diagnosis
Sonographic imaging during the first trimester usually depicts MC twins, with absent or vague heartbeat in one.In a typical missed abortion case, the size of the embryo/fetus decreases with time, but the size of presumed missed twin is increasing in the TRAP sequence. Color Doppler studies on the umbilical vessels show the characteristic reversed flow in the acardiac twin. Later in pregnancy, the phenotypic characteristics of the acardiac twin are easily recognized.
Management
The following information should be known before any management decision is made.
(1) Monoamniotic (MA) variants of MC twinning occurs in only 25% of cases of TRAP sequence(6).When TRAP occurs in MA pregnancies, treatment of the TRAP alone does not reduce the risks associated withMA twinning and umbilical cord occlusion with transection of the cord is necessary to avoid subsequent entanglement and demise of the "pump" twin(7).
(2) Because anomalies are reported in the pump twins as well it is necessary to exclude malformations to avoidunnecessary invasive treatments.
(3) The well being of the "pump" twin, especially adequate cardiac function should be established.
(4) The size of the acardiac mass and its umbilical cord in relation to the size of the "pump" twin should beestablished in order to chose the most appropriate mode of therapy.
A. Conservative Management
The target of follow-up is the "pump" twin’s congestive heart failure, which may lead to polyhydramnios andpreterm birth. In one large series of 49 cases, the overall perinatal mortality was 55%, primarily associated withprematurity(9). Follow up is performed by serial echocardiographic assessments, the purpose of which is to determine when cardiac function deteriorates.
Perinatal outcomes were strongly related to the ratio of the acardiac and pump-twin's weight: the higher theweight of the acardiac twin the more likely is the development of cardiac insufficiency in the pump twin, witha risk of congestive heart failure of 94% when the acardiac twin weighs more than half that of the "pump"twin.[8] In the series described by Moore et al, the mean overall ratio of the acardiac to the normal twinweights was 0.52 ± 0.42; however, the ratio for patients delivered <34 weeks was 60 vs. 29% (p< 0.04). In onequarter of the cases, the twin-weight ratio was >0.7 and the incidence of preterm births in these cases was 90%.As the fetal indices used for sonographic estimations of fetal weight are not applicable to acardiac twins, theauthors proposed the following equation:
Weight (g) = 1.2 L2-1.7L
where L = longest dimension of the acardiac mass.9Rough estimation of the weight of the acardiac twin can bedone by comparing the abdominal circumferences of the twins, or by applying any formula that estimates thesize of an ellipsoid. When the acardiac to the normal twin weights ratio is low, delivery at term or near term can be expected.However, when the weights ratio is high, the cardiac dysfunction of the "pump" twin may indicate early delivery. In a recent publication on 10 cases managed expectantly, Sullivan et al9reported on nine women who deliveredof healthy "pump" twins (one neonatal death), at a mean gestational age of 34.2 weeks, and mean weights ofthe "pump" and acardiac twins of 2279 and 1372 g, respectively.
B. Invasive Procedures
In the past, treatment by selective delivery of the acardiac twin via hysterotomy was advocated.10This aggressive modality has been replaced by interruption methods of the blood supply to the acardiac twin.Because of the artrio-arterial shunt in TRAP, the artery must be interrupted, as simple thrombosis is quite difficult to achieve and, if the vein is inadvertently thrombosed, the "pump" twin may suffer from embolizationrelated to the procedure. Umbilical cord ligation was pioneered by Quintero a decade ago,11by tying a knot around the umbilical cord ofthe acardiac twin by a working instrument. This procedure is associated with 70-80% success rate but alsoentails risks of technical failure (7.6%), premature rupture of membranes (10%) and bleeding. An alternative approach is endoscopic coagulation of the umbilical cord vessels of the acardiac twin using a Nd-YAG laser(12),which was successful in cases treated at 17 and 20 weeks, but failed in pregnancies treated at 26 and 28 weeks.Arias et al(13)reviewed 22 cases treated with invasive procedures. "Pump" twin mortality with endoscopic lasercoagulation at ≤24 weeks and endoscopic or sonographic-guided umbilical cord ligation >24 weeks was 13.6%in comparison with 50% mortality associated with expectant management. A tailored approach was also proposed, whereby conservative treatment was offered to milder cases whereas larger acardiac twin wereoffered invasive intervention and cord occlusion.(14)Tsao et al(15)proposed radiofrequency ablation of the vesselsin the fetal abdomen at the level of the cord insertion site of the acardiac twin. Energy was applied until termination of blood flow to the acardiac fetus was documented by Doppler ultrasound scanning. No majormaternal complications were reported in 13 cases, and 12 out of 13 "pump" twins remained alive and well. Recent review of 207 articles published in the English-language literature identified 32 reports involving 74cases of acardiac twin treated by invasive techniques.16The overall median gestational ages at treatment anddelivery were 21 and 36 weeks,respectively, with a median treatment-delivery interval of 13 weeks. The overall "pump" twin survival rate was 76%. Intrafetal ablation was associated with increased gestational duration (37 vs. 32 weeks) and longer median treatment-delivery interval (16 vs. 9.5 weeks) compared withcord occlusion techniques. It was also associated with a lower technical failure rate (13 vs. 35%), lower rate ofbirths or rupture of membranes at <32 weeks (23 vs. 58%) and higher rate of clinical success (77 vs. 50%)compared with cord occlusion techniques. This review suggests that intrafetal ablation is the treatment ofchoice for acardiac twins.
C. Delivery Considerations
The umbilical cord of the acardiac twin is usually very short, and the diameters of this ovoid shaped mass maybe larger than the pelvic outlet or even larger than the 10-12 cm uterine incision performed at cesarean section.Accordingly, it seems reasonable to look out for the welfare of normal twin first. This may be accomplishedonly during a cesarean section.
Summary
Diagnosis and management of the TRAP sequence has changed since the advent of sonography, echography,Doppler flow analysis, and so-called "minimally invasive" instrumentation. It is now possible to tailor theappropriate management by the inter-twin size ratio as well as by direct echographic assessment of the cardiacfunction of the "pump" twin. Endoscopes, introduced under fetoscopic or sonographic guidance, are currentlyavailable for ligation and/or ablation procedures to interrupt the blood flow to the acardiac twin. Expectantmanagement, under close observation, is at present safer than ever before. Consequently, the chance of survivalof the "pump" twin has significantly improved with modern perinatal care.
Anahtar Kelimeler
Kaynaklar
1. Coulam CB, Wright G. First trimester diagnosis of acardiac twins. Early Pregnancy 2000;4:261-70.
2. Ersch J, Stallmach T. Cardiac regression sequence: reversal of blood flow is diagnostic but not causative in an acardiac fetus. Early Hum Dev 1998;52:81-5.
3. Kamitomo M, Kouno S, Ibuka K, Oku S, Sueyoshi K, Maeda T, Hatae M. First-trimester findings associated with twin reversed arterial perfusion sequence. Fetal Diagn Ther 2004;19:187-90.
4. Bieber FR, Nance WE, Morton CC, Brown JA, Redwine FO, Jordan RL, Mohanakumar T. Genetic studies of an acardiac monster: evidence of polar body twinning in man. Science 1981;213:775-7.
5. Fisk NM, Ware M, Stanier P, Moore G, Bennett P. Molecular genetic etiology of twin reversed arterial perfusion sequence. Am J Obstet Gynecol 1996;174:891-4.
6. Petersen BL, Broholm H, Skibsted L, Græm N. Acardiac Twin with Preserved Brain. Fetal Diagnosis and Therapy 2001;16:231-233
7. Bermudez C, Tejada P, Gonzalez F, Perez-Wulff J, Araujo L, Azpurua H, Cadenas LF, Quintero RA. Umbilical cord transection in twin-reverse arterial perfusion syndrome with the use of a coaxial bipolar electrode (Versapoint). J Matern Fetal Neonatal Med 2003;14:277-8.
8. Moore RT, Gale S, Benirschke K. Perinatal outcome of forty-nine pregnancies complicated by acardiac twinning. Am J Obstet Gynecol 1990; 63:907-912.
9. Sullivan AE, Varner MW, Ball RH, Jackson M, Silver RM. The management of acardiac twins: a conservative approach. Am J Obstet Gynecol 2003;189:1310-3.
10. Robi GF, Payne GG, Morgan, MA: Selective delivery of an acardiac acephalic twin. N Engl J Med 1989;320:512-513.
11. Quintero RA, Reich H, Puder KS, Bardicef M, Evans MI, Cotton DB, Romero R. Brief report: umbilical-cord ligation of an acardiac twin by fetoscopy at 19 weeks of gestation. N Engl J Med 1994;330:469-71.
12. Ville Y, Hyett JA, Vandenbussche FP, Nicolaides KH. Endoscopic laser coagulation of umbilical cord vessels in twin reversed arterial perfusion sequence. Ultrasound Obstet Gynecol 1994;4:396-8.
13. Arias F, Sunderji S, Gimpelson R, Colton E. Treatment of acardiac twinning. Obstet Gynecol 1998;91:818-21.
14. Weisz B, Peltz R, Chayen B, Oren M, Zalel Y, Achiron R, Lipitz S. Tailored management of twin reversed arterial perfusion (TRAP) sequence. Ultrasound Obstet Gynecol 2004;23:451-5.
15. Tsao K, Feldstein VA, Albanese CT, Sandberg PL, Lee H, Harrison MR, Farmer DL. Selective reduction of acardiac twin by radiofrequency ablation. Am J Obstet Gynecol 2002;187:635-40.
16. Tan TY, Sepulveda W. Acardiac twin: a systematic review of minimally invasive treatment modalities. Ultrasound Obstet Gynecol 2003; 22:409-19.